比特币白皮书原版(附比特币白皮书中文版)

2008年10月31日,中本聪(Satoshi Nakamoto)在P2P foundation网站发布比特币白皮书《比特币:一种点对点的电子现金系统》,在白皮书发布16周年之际,为了重读这篇永远改变了金融世界的经典,金色财经再次刊发中文版比特币白皮书

“tape”, is made public, but without telling who the parties were.
传统的银行模型通过限制他人获取交易者和可信第三方的信息而达成一定程度的隐私保护。出于对将所有交易记录公开的需求否决了这种方法。但是,维持隐私可通过于另一处的切断信息流来实现——公钥匿名。公众可以看到某某向某某转账了一定的金额,但是,没有任何信息指向某个确定的人。这种水平的信息发布有点像股市交易,只有时间和各个交易的金额被公布,但是,没有人知道交易双方都是谁。
As an additional firewall, a new key pair should be used for each transaction to keep them from being linked to a common owner. Some linking is still unavoidable with multi-input transactions, which necessarily reveal that their inputs were owned by the same owner. The risk is that if the owner of a key is revealed, linking could reveal other transactions that belonged to the same owner.
还有另外一层防火墙。交易者应该针对每一笔交易启用一对新的公私钥,以便他人无法将这些交易追溯到同一个所有者身上。有些多输入的交易依然难免被追溯,因为那些输入必然会被识别出来自于同一个所有者。危险在于,如果一个公钥的所有者被曝光之后,与之相关的所有其他交易都会被曝光。
11. 计算 (Calculations)We consider the scenario of an attacker trying to generate an alternate chain faster than the honest chain. Even if this is accomplished, it does not throw the system open to arbitrary changes, such as creating value out of thin air or taking money that never belonged to the attacker. Nodes are not going to accept an invalid transaction as payment, and honest nodes will never accept a block containing them. An attacker can only try to change one of his own transactions to take back money he recently spent.
假设一个场景,某个攻击者正在试图生成一个比诚实链更快的替代链。就算他成功了,也不会使当前系统置于模棱两可的尴尬境地,即,他不可能凭空制造出价值,也无法获取从未属于他的钱。网络节点不会把一笔无效交易当作支付,而诚实节点也永远不会接受一个包含这种支付的区块。攻击者最多只能修改属于他自己的交易,进而试图取回他已经花出去的钱。
The race between the honest chain and an attacker chain can be characterized as a Binomial Random Walk. The success event is the honest chain being extended by one block, increasing its lead by +1, and the failure event is the attacker’s chain being extended by one block, reducing the gap by -1.
诚实链和攻击者之间的竞争可以用二项式随机漫步来描述。成功事件是诚实链刚刚被添加了一个新的区块,使得它的优势增加了
;而失败事件是攻击者的链刚刚被增加了一个新的区块,使得诚实链的优势减少了

The probability of an attacker catching up from a given deficit is analogous to a Gambler’s Ruin problem. Suppose a gambler with unlimited credit starts at a deficit and plays potentially an infinite number of trials to try to reach breakeven. We can calculate the probability he ever reaches breakeven, or that an attacker ever catches up with the honest chain, as follows:
攻击者能够从落后局面追平的概率类似于赌徒破产问题。假设,一个拿着无限筹 码的赌徒,从亏空开始,允许他赌无限次,目标是填补上已有的亏空。我们能算出他最终能填补亏空的概率,也就是攻击者能够赶上诚实链的概率[8],如下:
Given our assumption that p>q, the probability drops exponentially as the number of blocks the attacker has to catch up with increases. With the odds against him, if he doesn’t make a lucky lunge forward early on, his chances become vanishingly small as he falls further behind.
既然我们已经假定p>q, 既然攻击者需要赶超的区块数量越来越多,那么其成功概率就会指数级下降。于赢面不利时,如果攻击者没有在起初就能幸运地做一个前移步刺,那么他的胜率将在他进一步落后的同时消弭殆尽。
We now consider how long the recipient of a new transaction needs to wait before being sufficiently certain the sender can’t change the transaction. We assume the sender is an attacker who wants to make the recipient believe he paid him for a while, then switch it to pay back to himself after some time has passed. The receiver will be alerted when that happens, but the sender hopes it will be too late.
现在考虑一下一笔新交易的收款人需要等多久才能充分确定发款人不能更改这笔交易。我们假定发款人是个攻击者,妄图让收款人在一段时间里相信他已经支付对付款项,随后将这笔钱再转回给自己。发生这种情况时,收款人当然会收到警告,但发款人希望那时木已成舟。
The receiver generates a new key pair and gives the public key to the sender shortly before signing. This prevents the sender from preparing a chain of blocks ahead of time by working on it continuously until he is lucky enough to get far enough ahead, then executing the transaction at that moment. Once the transaction is sent, the dishonest sender starts working in secret on a parallel chain containing an alternate version of his transaction.
收款人生成了一对新的公私钥,而后在签署之前不久将公钥告知发款人。这样可以防止一种情形:发款人提前通过连续运算去准备一条链上的区块,并且只要有足够的运气就会足够领先,直到那时再执行交易。一旦款项已被发出,那个不诚实的发款人开始秘密地在另一条平行链上开工,试图在其中加入一个反向版本的交易。
The recipient waits until the transaction has been added to a block and
blocks have been linked after it. He doesn’t know the exact amount of progress the attacker has made, but assuming the honest blocks took the average expected time per block, the attacker’s potential progress will be a Poisson distribution with expected value:
收款人等到此笔交易被打包进区块,并已经有 z 个区块随后被加入。他并不知道攻击者的工作进展究竟如何,但是可以假定诚实区块在每个区块生成过程中耗费的平均时间;攻击者的潜在进展符合泊松分布,其期望值为:
To get the probability the attacker could still catch up now, we multiply the Poisson density for each amount of progress he could have made by the probability he could catch up from that point:
为了算出攻击者依然可以赶上的概率,我们要把每一个攻击者已有的进展的帕松密度乘以他可以从那一点能够追上来的概率:
Rearranging to avoid summing the infinite tail of the distribution…
为了避免对密度分布的无穷级数求和重新整理…
Converting to C code…
转换为 C 语言程序……
#include double AttackerSuccessProbability(double q, int z){double p = 1.0 – q;double lambda = z * (q / p);double sum = 1.0;int i, k;for (k = 0; k <= z; k++){double poisson = exp(-lambda);for (i = 1; i <= k; i++)poisson *= lambda / i;sum -= poisson * (1 - pow(q / p, z - k));}return sum;}Running some results, we can see the probability drop off exponentially with z.获取部分结果,我们可以看到概率随着 z 的增加指数级下降:q=0.1z=0 P=1.0000000z=1 P=0.2045873z=2 P=0.0509779z=3 P=0.0131722z=4 P=0.0034552z=5 P=0.0009137z=6 P=0.0002428z=7 P=0.0000647z=8 P=0.0000173z=9 P=0.0000046z=10 P=0.0000012q=0.3z=0 P=1.0000000z=5 P=0.1773523z=10 P=0.0416605z=15 P=0.0101008z=20 P=0.0024804z=25 P=0.0006132z=30 P=0.0001522z=35 P=0.0000379z=40 P=0.0000095z=45 P=0.0000024z=50 P=0.0000006Solving for P less than 0.1%...若是 P 小于 0.1%……P < 0.001q=0.10 z=5q=0.15 z=8q=0.20 z=11q=0.25 z=15q=0.30 z=24q=0.35 z=41q=0.40 z=89q=0.45 z=34012. 结论 (Conclusion)We have proposed a system for electronic transactions without relying on trust. We started with the usual framework of coins made from digital signatures, which provides strong control of ownership, but is incomplete without a way to prevent double-spending. To solve this, we proposed a peer-to-peer network using proof-of-work to record a public history of transactions that quickly becomes computationally impractical for an attacker to change if honest nodes control a majority of CPU power. The network is robust in its unstructured simplicity. Nodes work all at once with little coordination. They do not need to be identified, since messages are not routed to any particular place and only need to be delivered on a best effort basis. Nodes can leave and rejoin the network at will, accepting the proof-of-work chain as proof of what happened while they were gone. They vote with their CPU power, expressing their acceptance of valid blocks by working on extending them and rejecting invalid blocks by refusing to work on them. Any needed rules and incentives can be enforced with this consensus mechanism.我们提出了一个不必依赖信任的电子交易系统;起点是一个普通的使用数字签名的硬币框架开始,虽然它提供了健壮的所有权控制,却无法避免双重支付。为了解决这个问题,我们提出一个使用工作证明机制的点对点网络去记录一个公开的交易记录历史,只要诚实节点能够控制大多数 CPU 算力,那么攻击者就仅从算力方面就不可能成功篡改系统。这个网络的健壮在于它的无结构的简单。节点们可以在很少协同的情况下瞬间同时工作。它们甚至不需要被辨认,因为消息的路径并非取决于特定的终点;消息只需要被以最大努力为基本去传播即可。节点来去自由,重新加入时,只需要接受工作证明链,作为它们离线之时所发生之一切的证明。它们通过它们的 CPU 算力投票,通过不断为链添加新的有效区块、拒绝无效区块,去表示它们对有效交易的接受与否。任何必要的规则和奖励都可以通过这个共识机制来强制实施。Huobi GlobalHuobi Global参考文献 (References)W. Dai, "b-money," http://www.weidai.com/bmoney.txt, 1998. H. Massias, X.S. Avila, and J.-J. Quisquater, "Design of a secure timestamping service with minimal trust requirements," In 20th Symposium on Information Theory in the Benelux, May 1999. S. Haber, W.S. Stornetta, "How to time-stamp a digital document," In Journal of Cryptology, vol 3, no 2, pages 99-111, 1991. D. Bayer, S. Haber, W.S. Stornetta, "Improving the efficiency and reliability of digital time-stamping," In Sequences II: Methods in Communication, Security and Computer Science, pages 329-334, 1993. S. Haber, W.S. Stornetta, "Secure names for bit-strings," In Proceedings of the 4th ACM Conference on Computer and Communications Security, pages 28-35, April 1997. A. Back, "Hashcash - a denial of service counter-measure," http://www.hashcash.org/papers/hashcash.pdf, 2002. R.C. M

主题测试文章,只做测试使用。发布者:币安赵长鹏,转转请注明出处:https://www.binancememe.com/6534.html

(0)
币安赵长鹏的头像币安赵长鹏
上一篇 2025年3月29日 上午12:00
下一篇 2025年3月29日 上午12:06

相关推荐

  • 空投虚拟币的平台有哪些?空投虚拟币的平台盘点

    虚拟货币空投是一种营销策略,目的就是推广新项目及其代币,对于投资者来说,想要快速参与空头活动,就要了解目前市场上空投虚拟币的平台有哪些?接下来小编为大家详细盘点一下空投虚拟币的平台

    币安资讯 2024年8月16日
    00
  • 什么是Arbitrum?Arbitrum代币ARB又是什么?_链技术

    本文将为您介绍一种基于以太坊的二层扩容解决方案Arbitrum,以及其原生的治理代币—Arbitrum币(ARB),并分析其原理、特点、优势、挑战和前景,帮助您了解这种新型的区块链技术和代币。 什么是 Arbitrum? Arbitrum 是一种基于以太坊的二层扩容解决方案,使用了一种称为 Optimist

    币安资讯 2025年3月22日
    00
  • 什么是Alephium 与 Kaspa?差异分析_链技术

    Alephium和Kaspa是许多加密矿工和现代投资者青睐的新兴山寨币,因为它们解决了比特币和以太坊等传统加密货币面临的大多数问题。 Alephium 和 Kaspa 独一无二,具有创新特征,使它们彼此之间以及其他加密货币区别开来。Kaspa 表示,它是速度最快、开源、去中心化且完全可扩展的 Layer-1,而 Ale

    币安资讯 2025年11月4日
    00
  • The Graph:以Web3的方式读取数据_链技术

    > 简介 互联网本应是一个数字天堂,在那里我们可以与任何人、任何地方联系,并获取无限的信息。也应该是一个超越物理和文化限制的地方,以前所未有的方式扩展人类的集体知识。 但是,我们最终得到的不是这个多元文化的乌托邦,而是一个数字乌托邦,在这里,我们信任的将我们与世界联系起来的公司也在剥削我们以获取利润。我们的数据,我们数

    币安资讯 2024年11月7日
    00
  • 加密新手生存指南:新手必看攻略

    加密资产市场总会有下一次机会,但如果你第一次就亏光了钱,你将无法参与下一次,让我们面对现实:作为一个新手,如果你不小心,加密投资可能会毁掉你,大多数加密相关内容要么是炒作,要么是技术术语,这篇指南两者都不是,这是加密新手生存指南,感兴趣的小伙伴可以了解一下

    币安资讯 2025年6月27日
    00

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

联系我们

400-800-8888

在线咨询: QQ交谈

邮件:admin@example.com

工作时间:周一至周五,9:30-18:30,节假日休息

关注微信
联系客服-完成入住-返佣奖励-领取空投
体验全球最大的加密货币交易平台